Instanton interactions and Borel summability

Zbigniew Ambroziński

4 lipca 2012

Foundation
for Polish Science

Plan of the seminar

Instanton calculus

Perturbative energy

Comparison with numerics

Summary

Anharmonic double well potential

$$
V(x)=\frac{1}{2} x^{2}(1-\sqrt{g} x)^{2}
$$

Contributions to energy:

- perturbative (Rayleigh Schrödinger perturbation theory)
- nonperturbative (instantons)

Perturbative expansion

$$
\begin{aligned}
& H \psi=E \psi \quad \longrightarrow \quad E=\sum_{n} \epsilon_{n} g^{n} \\
& {\left[\text { Bender, Wu]: } \quad \epsilon_{n} \approx-0.95 \times 3^{n} n!\right.}
\end{aligned}
$$

Borel transform:

$$
\mathcal{B}(t)=\sum_{n} \frac{1}{n!} \epsilon_{n} t^{n}
$$

$$
\text { convergent for }|t|<1 / 3
$$

Inverse Borel transform:

$$
E_{\text {Borel }}(g)=\frac{1}{g} \int_{0}^{\infty} d t e^{-t / g} \mathcal{B}(t)
$$

needs $\mathcal{B}(t)$ on whole positive axis \Rightarrow make analytical continuation

Analytical continuation

Approximate analytical continuation by Padé approximant. Analytical continuation has a cut at $(1 / 3, \infty)$.
\Rightarrow Integrate along a contour.

Semiclassical approximation in Euclidean space

In Euclidean space:

$$
e^{-E T} \propto \int \mathcal{D}[x(\tau)] e^{-S[x(\tau)]}
$$

\Rightarrow make saddle point approximation
Instantons - classical trajectories in Euclidean space (saddle points).
Action of one instanton:

$$
S\left[x_{1}(\tau)\right]=1 / 6 g
$$

Action of instanton - antiinstanton trajectory [Bogomolny]:

$$
S\left[x_{2}(\tau)\right]=2 S\left[x_{1}(\tau)\right]-2 e^{-\left|\tau_{1}-\tau_{2}\right|} / g
$$

$$
\begin{array}{rlr}
E_{0}= & \frac{1}{2}-\frac{1}{\sqrt{g \pi}} e^{-1 / 6 g} & \text { - independent instantons } \\
& +\frac{1}{g \pi} e^{-1 / 3 g}(\gamma+\ln (-2 / g)) & \text { - corrections from interactions }
\end{array}
$$

$$
E_{1}=\frac{1}{2}+\frac{1}{\sqrt{g \pi}} e^{-1 / 6 g}+\frac{1}{g \pi} e^{-1 / 3 g}(\gamma+\ln (-2 / g))
$$

$E=\frac{1}{2}\left(E_{0}+E_{1}\right)$ has an imaginary ambiguity coming from logarithm!

$$
E=\frac{1}{2}+\frac{1}{g \pi} e^{-1 / 3 g}(\gamma+\ln (2 / g) \pm i \pi)
$$

Total energy

$$
\begin{aligned}
E & =\sum_{n} a_{n} g^{n}+\frac{1}{g \pi} e^{-1 / 3 g}(\gamma+\ln (-2 / g)) \\
& =E_{\text {Borel }}+\delta_{2} E
\end{aligned}
$$

Questions

- Do ambiguities of the two contributions cancel?
- Is $\operatorname{Re} \delta_{2} E$ big enough to be seen in numerics?

Total energy

$$
\begin{aligned}
E & =\sum_{n} a_{n} g^{n}+\frac{1}{g \pi} e^{-1 / 3 g}(\gamma+\ln (-2 / g)) \\
& =E_{\text {Borel }}+\delta_{2} E
\end{aligned}
$$

Questions

- Do ambiguities of the two contributions cancel?
- Is $\operatorname{Re} \delta_{2} E$ big enough to be seen in numerics?

Answers

- Yes
- Yes

Cut Fock space method

- express Hamiltonian as a matrix:

$$
(H)_{m, n}=\langle m| \frac{1}{2} P^{2}+V(X)|n\rangle
$$

- introduce cutoff to get finite matrix
- eigenvalues approximate energies [Wosiek]

High precision comparison without $\delta_{2} E$

High precision comparison

 with $\delta_{2} E$

Next correction is seen!

Summary

- instanton interactions cancel ambiguity of Borel energies

Summary

- instanton interactions cancel ambiguity of Borel energies
- instanton interactions improve Borel energies for small g

Summary

- instanton interactions cancel ambiguity of Borel energies
- instanton interactions improve Borel energies for small g
- for larger g the (asymptotic) series $\sum c_{n} g^{n}$ becomes important and needs to be summed (Borel sum?)

Summary

- instanton interactions cancel ambiguity of Borel energies
- instanton interactions improve Borel energies for small g
- for larger g the (asymptotic) series $\sum c_{n} g^{n}$ becomes important and needs to be summed (Borel sum?)
- but only few c_{n} are known

Summary

- instanton interactions cancel ambiguity of Borel energies
- instanton interactions improve Borel energies for small g
- for larger g the (asymptotic) series $\sum c_{n} g^{n}$ becomes important and needs to be summed (Borel sum?)
- but only few c_{n} are known
- next corrections: 3-instanton interactions

Literature

- E.B. Bogomolny Calculation if instanton - anti-instanton contributions in quantum mechanics, Phys.Lett. B91 (1980) 431-435
- J. Zinn-Justin, Multi - instanton contributions in quantum mechanics, Nucl.Phys. B192 (1981) 125-140; J. Zinn-Justin, U.D. Jentschura, Higher order corrections to instantons, J.Phys.A A34 (2001) L253-L258
- M. Ünsal, Theta dependence, sign problems and topological interference, arXiv:1201.6426
- C. M. Bender, T. T. Wu, Anharmonic oscillator, Phys.Rev. 184 (1969) 1231-1260
- M. Trzetrzelewski, J. Wosiek, Quantum systems in a cut Fock space, Acta Phys.Polon. B35 (2004) 1615-1624;
J. Wosiek, Spectra of supersymmetric Yang-Mills quantum mechanics, Nucl.Phys. B644 (2002) 85-112

